

ATES: what do they cost?

<u>Matthias Herrmann</u>, Paul Fleuchaus, Michaël Verbiest, Bas Godschalk, Stig Niemi Sørensen, Philipp Blum

www.kit.edu

Major markets for ATES How important are capital costs for ATES markets?

Capital costs of high importance for all markets

Data and partners

- Capital costs data from 7 different countries
 - ▶ <u>Belgium:</u> IFTech \rightarrow 8 systems
 - > <u>Netherlands:</u> IF Technology \rightarrow **102 Systems**
 - > <u>Denmark</u>: Energy Machines \rightarrow 5 Systems

- > <u>Germany</u>: tewag Technologie Erdwärmeanlagen Umweltschutz GmbH \rightarrow 3 GWHP systems
- <u>Sweden, Canada, Norway</u>, Netherlands, Germany, Belgium, Denmark:
 19 ATES systems from literature
- → All data was corrected for inflation using the Harmonized Index of Consumer Prices (HICP), reference year was 2022.

Capital costs of ATES

Drilling costs contribute to 8% of total capital costs

Larger systems have lower capital costs per installed capacity

- Data converge to 300 €/kW at around
 2 MW of installed capacity
- Range of 300 €/kW to 1.500 €/kW
- Heating and cooling capacity

Drilling depth does <u>not strongly correlate</u> with capital costs

- The higher the flow rate the lower the capital costs per installed capacity.
 - Higher flow rates correlate with larger systems

Maximum depth of data set is 250 m.

ATES vs other STES

LT-ATES with the lowest capital costs per storage volume

- TTES and BTES can be used for short-term / mid-term storage.
- Costs for PTES, TTES and HT-ATES are incomplete.
 - <u>Heat source</u> is missing
- For TTES and PTES also capital costs of piping and grid connection are missing.
- LT-ATES and BTES provide heat and cold.

ATES vs other STES

ATES with the lowest capital costs per stored energy

 Stored energy depends on the sitespecific ΔT

Conclusion and outlook

- Capital costs per installed capacity of ATES converge to a minimum of 300 €/kW at around 2 MW!
 - Ideally, larger ATES systems should be built > 2 MW.
- LT-ATES provide the cheapest capital costs per installed capacity compared to other STES
 - Hence, ATES should be considered to store energy, if the geological and hydrogeological conditions are favorable.
- > In Germany > 50 % are very well and well suitable for ATES systems!

10

Less suitable

Bundesministerium für Bildung und Forschung

Thank you for your attention

Contact

Stemmle R, Hanna R, Menberg K, Østergaard PA, Jackson M, Staffell I, et al. Policies for aquifer thermal energy storage: international comparison, barriers and recommendations. Clean Techn Environ Policy 2024. <u>https://doi.org/10.1007/s10098-024-02892-1</u>.

Fleuchaus P, Godschalk B, Stober I, Blum P. Worldwide application of aquifer thermal energy storage – A review. Renewable and Sustainable Energy Reviews 2018;94:861–76. https://doi.org/10.1016/j.rser.2018.06.057.

Matthias Herrmann KIT-AGW <u>matthias.herrmann@kit.edu</u>

KIT – The Research University in the Helmholtz Association

www.kit.edu